

Single-Spin Asymmetries and Transverse-Momentum-Dependent **Distributions at RHIC Christine** Aidala Los Alamos National Lab EINN 2009, Milos, Greece **September 27, 2009**

Spin physics at RHIC

- Polarized protons at RHIC 2002-present
- Mainly √s = 200 GeV, also
 62.4 GeV in 2006, started
 500 GeV program in 2009
- Two large multipurpose detectors: STAR and PHENIX
 - Longitudinal or transverse polarization
- One small spectrometer until 2006: BRAHMS
 - Transverse polarization only

BRAHMS detector

PHENIX detector

• Los Alamos

C. Aidala, EINN 2009, September 27, 2009

<u>STAR detector</u>

Transverse Single-Spin Asymmetries: From Low to High Energies!

BRAHMS

Polarization-averaged cross sections at $\sqrt{s}=200 \ GeV$

Good description at 200 GeV over all rapidities down to $p_T of 1-2 \text{ GeV/c}$. Los Alamos

2009, September 27, 2002

Lower energies: $\sqrt{s}=62.4 \text{ GeV}$ PRD79, 021002 (2009) Midrapidity pions

Comparisons to NLO and NLL pQCD calculations using $\mu=p_T$ shown. Unlike at 200 GeV, scale choice of $\mu=p_T$ underpredicts the data. → Threshold logarithm effects still relevant at this intermediate energy?

But—overall, pretty good agreement!

$\sqrt{s}=62.4 \ GeV$ Forward pions

Comparison of NLO pQCD calculations with BRAHMS π data at high rapidity. The calculations are for a scale factor of $\mu=p_T$, KKP (solid) and DSS (dashed) with CTEQ5 and CTEQ6.5.

Surprisingly good description of data, in apparent disagreement with earlier analysis of ISR π^0 data at 53 GeV.

No comparison to NLL yet.

C. Aidala, EINN 2009, September 27, 2009

Still not so bad!

$\sqrt{s}=62.4 \ GeV$ Forward kaons

Improving input to pQCD calculations

Hadronic collision data now being included in fragmentation function fits

- de Florian, Sassot and Stratmann (PRD 75, 114010 (2007) and other works)

Los Alamos

ONAL LABORATO

BRAHMS

C. Aidaia, EINN 200

Progress in pQCD calculational techniques

pQCD an ever-more-powerful tool. Interpretation of p+p results—over a wider range of energies—getting easier!

ďσ

 10^{1}

 10^{0}

 10^{-1}

resummed

 $O(\alpha_{e}) \exp (\alpha_{e})$

NLO

lower: $\mu = 2M$

One 1 Alme Cross resur

hadro

Los Alamos

 10^{4}

 10^{3}

10²

101

 10^{0}

 10^{-1}

resummed

 $\times 0(\alpha_{\rm s}) \exp(\alpha_{\rm s})$

NLO

upper: $\mu = M$

lower: $\mu = 2M$

åσ/dMdY (pb/GeV)

 "Modern-day 'testing' of (perturbative) QCD is as much about pushing the boundaries of its
 applicability as about the verification that QCD is the correct theory of hadronic physics."
 – G. Salam, hep-ph/0207147 (DIS2002 proceedings)

C. Aidala, EINN 2009, September 27, 2009

14

(GeV)

38.8 GeV!

x_F dependence in p_T slices, 200 GeV

• At all p_T , increasing A_N with x_F .

• Magnitude is approximately constant at p_T >1.5 GeV/c

$A_N x_F p_T$ dependence at $\sqrt{s} = 62.4$ GeV

At low- $p_T A_N(\pi)$ increases with p_T . (Theoretically constrained to be 0 at $p_T=0$)

But looks like positive A_N persists up to $p_T \sim 5$ GeV! Expected decrease as $\sim 1/p_T$ not observed.

Los Alamos

C. Aidala, EINN 2009, September 27, 2009

Multiplicity dependence of pion SSA at 200 GeV BRAHMS

BRAHMS Preliminary

Ratio of low to high multiplicity events vs. track p_{T} \rightarrow Higher multiplicity events correlate with hard scattering

Selecting on higher multiplicity events enhances SSA. Effect not dominated by p_{T} dependence of SSA.

C. Aidala, EINN 2009, September 27, 2009

Forward π^0 SSA's at $\sqrt{s}=62.4$ GeV

nucl-ex/0701031

Los Alamos

Need more data to understand p_T dependence . . .

19

Forward π^0 's at $\sqrt{s}=62.4$ GeV: Pseudorapidity dependence

Indication of larger forward asymmetries at higher pseudorapidity

C. Aidala, EINN 2009, September 27, 2009

Heavy flavor single spin asymmetries: Isolate gluons

SSA of heavy flavor: predictions

PRD78, 114013 (2008)

Los Alamos

Significantly improved measurements expected after silicon vertex upgrade in 2011.

C. Aidala, EINN 2009, September 27, 2009

What about charmonium?

- Given a non-zero gluon Sivers function, non-zero transverse SSA expected for J/Psi only in color-singlet model in p+p, only in coloroctet in SIDIS—Yuan, PRD78, 014024 (2008)
 - SSA sensitive to production mechanism!
- Application of TMDs to long-standing issues in QCD traditionally considered via other approaches
 - A maturing field!

"Rough" calculation for $J/\Psi A_N$ at RHIC

Toward A_N of vector mesons: Opposite sign from pseudoscalars?

3 photon events to look for $\omega \rightarrow \pi^0 \gamma$ (BR= 8.9%)

- 2008 data, FMS
- p_T (triplet) > 2.6 GeV/c
- E (triplet) > 30 GeV
- p_T (photon cluster) > 1.5 GeV/c
- $p_T(\pi^0) > 1 \text{ GeV/c}$
- 10σ signal!

Los Alamos

Small S/B currently a challenge in extracting significant asymmetry...work ongoing!

C. Aidala, EINN 2009, September 27, 2009

Beyond inclusive measurements: Dijet SSA to probe Sivers effect

Sivers effect in di-hadron production

<u>Forward</u> π^0 - π^0 azimuthal correlations

Possible back-to-back di-jet/di-hadron Sivers measurement
Possible near-side hadron correlation for Collins fragmentation function/Interference fragmentation function + Transversity

More two-hadron measurements: Interference Fragmentation Function from BELLE

IFF asymmetry measurement in p+p to probe transversity

IFF asymmetry measurement in p+p: p_T dependence

Analysis underway to extend to forward charged particle production.

More di-hadrons: Attempting to probe k_T from orbital motion

Forward neutrons at $\sqrt{s}=200$ GeV at PHENIX

Cross section at 200 GeV consistent with ISR data \rightarrow suggests Feynman scaling holds

Cross section of forward neutron production (integrated in $0 < p_T < 0.11 x_F$ (GeV/c))

Forward neutrons at $\sqrt{s}=200$ GeV at PHENIX

Large negative SSA observed for $x_F>0$, enhanced by requiring concidence with forward charged particles ("MinBias" trigger). No x_F dependence seen.

Neutron SSA for local polarimetry

Allows measurement of any remaining component in an undesired direction

....<mark>Blue</mark>

Spin Rotators ON Longitudinal polarization

New: Bunch-by-bunch polarization information

From ~10 minutes of 500 GeV commissioning data in March 2009!

With transverse polarization, use scalers to count raw left-right SSA in forward neutron production for each bunch crossing. Measurement of *bunch-by-bunch variation* in polarization. (Sign flip for bunches polarized vertically up vs. down.) C. Aidala, EINN 2009, September 27, 2009

Forward neutrons at other energies

Significant forward neutron asymmetries observed down to 62.4 and up to 410 GeV!

$$A = \frac{N_+ - RN_-}{N_+ + RN_-}$$

p_T scaling of forward neutron SSA?

Inclusive neutrons 62.4, 200, 500 GeV

Neutrons with charged particle trigger 200, 500 GeV

The future: Forward Hadron Calorimeter (FHC) at STAR

Real jet physics with FMS + FHC

Lambda, Photon (isolation)

BNL-AGS-E864 hadron calorimeter detectors Refurbished and used by PHOBOS

> Estimated statistical precision for uncertainty in analyzing power for $p_{\uparrow}+p \rightarrow jet + X at \sqrt{s} = 200 \text{ GeV}.$

The future: Forward EMCal (FOCAL)at PHENIX

C. Aidala, EINN 2009, September 27, 2009

Photon-jet SSA using FOCAL + VTX

J. Lajoie

2008 Sivers distribution fits

Conclusions

- Maturing transverse spin programs at RHIC!
 - Not initially planned as a major component of the RHIC spin program, but lots of exciting progress in theory and experiment since ~2002 has greatly increased interest at RHIC
 - Ever-improving "pQCD toolbox" allows one to learn more and more from hadronic collisions
 - Moving beyond "easy" inclusive probes to start to examine various correlation measurements and measure inclusive probes with smaller signal:bg
 - Transverse spin physics a major motivation in latest proposed upgrades for PHENIX and STAR

RHIC as a Polarized p+*p Collider*

Polarized Collider Development

Parameter	Unit	2002	2003	2004	2005	2006
No. of bunches		55	55	56	106	111
bunch intensity	1011	0.7	0.7	0.7	0.9	1.4
store energy	GeV	100	100	100	100	100
β*	m	3	1	1	1	1
peak luminosity	$10^{30} \text{cm}^{-2} \text{s}^{-1}$	2	6	6	10	35
average luminosity	10 ³⁰ cm ⁻² s ⁻¹	1	4	4	6	20
Collision points		4	4	4	3	2
average polarization,	% C. Aidala, EINI	15 N 2009, Septer	35 nber 27, 2009	46	47	60-65 45

Machine performance: Transverse spin running at PHENIX

Year	√s [GeV]	Recorded L	Pol [%]	FOM (P2L)
2001 (Run-2)	200	.15 pb-1	15	3.4 nb-1
2005 (Run-5)	200	.16 pb- 1	47	38 nb -1
2006 (Run-6)	200	2.7 pb-1	51	700 nb-1
2006 (Run-6)	62.4	.02 pb-1	48	4.6 nb-1
2008 (Run-8)	200	5.2 pb-1	46	1100 nb-1

<u>Forward</u> Hadron Production at $\sqrt{s}=200$ GeV

C. Aidala, EINN 2009, September 27, 2009

$\pi/K/p$ SSA Measurements at 200 and 62 GeV BRAHMS measures identified hadrons ($\pi,K,p,pbar$) in the kinematic ranges of

- 0 < x_{F} < 0.35 and 0.2 < p_{T} < 3.5 GeV/c at $\sqrt{s}{=}200~GeV$
- 0 < x_F < 0.6 and 0.2 < p_T < 1.5 GeV/*c* at \sqrt{s} =62 GeV for
- x_F , p_T , flavor, \sqrt{s} dependent SSA

Los Alamos

- cross-section of unpolarized hadron production (constraint for theoretically consistent description)
 Data:
- Run-5: $\sqrt{s} = 200 \text{ GeV } 2.5 \text{ pb}^{-1} \text{ recorded (polarization:45-50\%)}$
- Run-6: √s = 62 GeV 0.21 pb⁻¹ recorded (polarization:45-65%) Data from Forward Spectrometer at 2.3-4 deg. covering "high"-x_F (0.15 < x_F < 0.6) are presented.

BRAHMS $x_F p_T$ acceptance at $\sqrt{s} = 62.4 \text{ GeV}$

Strong x_F-p_T correlation due to limited spectrometer solid angle acceptance.

Three angle settings of spectrometer used: 2, 3, and 6 deg

$A_N(\pi)$ at 4 deg. at $\sqrt{s} = 200 \ GeV$

$A_N(K)$ at 2.3 deg at $\sqrt{s} = 200 \ GeV$

• Solid lines: two-flavor (*u*, *d*) fit

•

Los Alamos

- Dashed lines: valence + sea, anti-quark
 - Calculations done only for $< p_T(\pi) > > 1$ GeV/c C. Aidala, EINN 2009, September 27, 2009

Proton at 2.3 deg. at $\sqrt{s} = 200 \text{ GeV}$

- $A_N(pbar), A_N(K^-) > 0$: Accidental? Or contribution from sea-quarks
- $A_N(p) \sim 0$: At this kinematic region, significant fraction of proton are mostly from polarized beam proton, but only ones showing $A_N \sim 0$

$A_N(\pi)$ at $\sqrt{s} = 200 \ GeV$

• $A_N(\pi^+)$ positive; $A_N(\pi^-)$ negative

- 4-6% in 0.15 <x_F< 0.3

- Behavior consistent with slight decrease with increasing p_T as evident in going from 2.3 deg to 4 deg setting

• Good agreement with twist-3 calculations which also have the $1/p_T$ -dependence at higher p_T 53 C. Aidala, EINN 2009, September 27, 2009

$A_{\rm N}(\pi)$ at $\sqrt{s} = 62.4 \ GeV$

Large $A_N(\pi)$: 0.3-0.4 at $x_F \sim 0.6$, $p_T \sim 1.3$ GeV

LOS Alamos

• Strong $x_F - p_T$ dependence. Though $|A_N(\pi^+)| \sim |A_N(\pi^-)|$, $|A_N(\pi^+)/A_N(\pi^-)|$ decreases with x_F-p_T

Kaon SSA at 62.4 GeV

• $A_N \sim 0$ at negative x_F

Los Alamos

- $A_N(K^+) \sim A_N(K^-)$: positive ~20% at $x_F < 0.5-0.6$
- Calculations get signs correct but underpredict K⁻

C. Aidala, EINN 2009, September 27, 2009

Sensitivity to fragmentation functions

Calculations compared to BRAHMS data

- Twist-3 parton correlation calculation provided by F. Yuan
 - Kouvaris, Qiu, Vogelsang, Yuan
 - "Extended" with non-derivative terms
 ("moderate" effects at BRAHMS kinematics)
 - Two flavor (u,d) and valence+sea+antiquark fits
- Sivers effect calculations provided by U. D'Alesio

 Anselmino, Boglione, D'Alesio, Leader, Melis, Murgia
 "Sivers effect with complete and consistent k_T kinematics plus description of unpolarized cross section"

• A_N is zero within 1% \rightarrow contrast with forward pions

Los Alamos

• Constrains Sivers distribution function for gluons (Anselmino et al., PRD74, 094011 (2006))

• Updated π^0 analysis with ~200x improvement(!) in statistical figure-ofnderway . . .

C. Aidala, EINN 2009, September 27, 2009

ENIX

ΡН

PHENIX Kinematic Coverage

Forward Neutral Particles at IP12

$$\sqrt{s} = 200 \; GeV$$

 $\begin{array}{ccc} & \mbox{forward} & \mbox{backward} \\ \mbox{neutron} & -0.090 \pm 0.006 \pm 0.009 & 0.002 \pm 0.004 \pm 0.003 \\ \mbox{photon} & -0.009 \pm 0.015 \pm 0.007 & -0.020 \pm 0.010 \pm 0.003 \\ \mbox{π^0} & -0.022 \pm 0.030 \pm 0.002 & 0.005 \pm 0.021 \pm 0.0005 \\ \end{array}$

hep-ex/0610030

Forward neutron A_N

C. Aidala, EINN 2009, September 27, 2009

- New/recent results (post-SPIN2008?):
- STAR omega peak
- STAR forward pi0-pi0 correlations
- STAR eta
- (STAR low-pT pi0?)

Determination of transverse single spin asymmetries A_N

• Look at left-right asymmetries relative to one transversely polarized proton beam

$$A_{N}^{Left} = \frac{1}{P} \frac{N^{\uparrow} - RN^{\downarrow}}{N^{\uparrow} + RN^{\downarrow}}, R = \frac{L^{\uparrow}}{L^{\downarrow}}$$

N.B. Detector acceptance only on one side of beam for BRAHMS
→ Square-root formula not an option

$$A_{N} = \frac{1}{P} \frac{\sqrt{N_{left}^{\uparrow} \cdot N_{right}^{\downarrow}} - \sqrt{N_{left}^{\downarrow} \cdot N_{right}^{\uparrow}}}{\sqrt{N_{left}^{\uparrow} \cdot N_{right}^{\downarrow}} + \sqrt{N_{left}^{\downarrow} \cdot N_{right}^{\uparrow}}}$$

C. Aidala, EINN 2009, September 27, 2009

BELLE IFF: z binning

C. Aidala, EINN 2009, September 27, 2009

IFF: Definition of Vectors and Angles

Improving forward coverage at PHENIX

- Muon Piston Calorimeter (MPC): PbWO₄ calorimeter
- $3.1 < |\eta| < 3.7$
 - Region of large observed asymmetries
- Single arm commissioned in 2006
- Second arm took data in 2008

Full azimuthal coverage for $3.1 \le \eta \le 3.7$ and $2 \le E(\pi^0) \le 25$ GeV

C. Aidala, EINN 2009, September

Charged vs. neutral pions at 62.4 GeV

BRAHMS <η> = 3.44, comparable to PHENIX "all eta" = black circles.

Qualitatively similar behavior to E704 data: $-\pi^0$ positive, between π^+ and π^- -Roughly similar magnitude:

 $A_N(\pi^0)/A_N(\pi^+) \sim 25-50\%$

Quantitative comparison between identified pion asymmetries should provide strong test of theories!

Calculations: Kouvaris, Qiu, Vogelsang, Yuan, PRD74:114013, 2006

• Twist-3 calculation for pions at η = 3.3

Los Alanos

• Derived from fits to E704 data at \sqrt{s} ~20 GeV and then evolved to 62.4 and 200 GeV

Beware that kinematics not exactly matched, since A_N strong function of pT and

C. Aidala, EINN 2009, September 27, 2009